Highest Coefficients of Weighted Ehrhart Quasi-polynomials for a Rational Polytope

نویسندگان

  • VELLEDA BALDONI
  • MICHÈLE VERGNE
چکیده

We describe a method for computing the highest degree coefficients of a weighted Ehrhart quasi-polynomial for a rational simple polytope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Finite Calculus Approach to Ehrhart Polynomials

A rational polytope is the convex hull of a finite set of points in Rd with rational coordinates. Given a rational polytope P ⊆ Rd, Ehrhart proved that, for t ∈ Z>0, the function #(tP ∩ Zd) agrees with a quasi-polynomial LP(t), called the Ehrhart quasi-polynomial. The Ehrhart quasi-polynomial can be regarded as a discrete version of the volume of a polytope. We use that analogy to derive a new ...

متن کامل

Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra

This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients of the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a ...

متن کامل

Computing the Ehrhart quasi-polynomial of a rational simplex

We present a polynomial time algorithm to compute any fixed number of the highest coefficients of the Ehrhart quasi-polynomial of a rational simplex. Previously such algorithms were known for integer simplices and for rational polytopes of a fixed dimension. The algorithm is based on the formula relating the kth coefficient of the Ehrhart quasi-polynomial of a rational polytope to volumes of se...

متن کامل

Generalized Ehrhart Polynomials

Let P be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations P (n) = nP is a quasi-polynomial in n. We generalize this theorem by allowing the vertices of P (n) to be arbitrary rational functions in n. In this case we prove that the number of lattice points in P (n) is a quasi-polynomial for n sufficiently large. Our work w...

متن کامل

Quasi-period Collapse and GLn(Z)-Scissors Congruence in Rational Polytopes

Quasi-period collapse occurs when the Ehrhart quasi-polynomial of a rational polytope has a quasi-period less than the denominator of that polytope. This phenomenon is poorly understood, and all known cases in which it occurs have been proven with ad hoc methods. In this note, we present a conjectural explanation for quasi-period collapse in rational polytopes. We show that this explanation app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009